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Abstract

We have used incompressible Navier–Stokes in 2D finite element modelling to investigate rigid inclusion rotation under confined bulk

simple shear flow. Confinement is defined as the ratio (S) between the channel width (H) and the inclusion’s least axis (e2)(SZH/e2). The

numerical results show that (i) inclusion rotation is strongly influenced by S and, when the confinement is effective, aspect ratio (R) and shape

also play an important role. (ii) Back rotation is limited because inclusions reach a stable equilibrium orientation (fse). (iii) There is also an

unstable equilibrium orientation (fue), which defines an antithetic rotation field with fse, and both fse and fue depend on S, and inclusion R

and shape.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of ductile shear zones is crucial to an

understanding of tectonic shortening at depth and exhuma-

tion of deep-seated rocks to shallow levels in the litho-

sphere. However, many of the mylonitic rocks now

observed at the Earth’s surface have undergone more or

less severe late recrystallisation, which has erased most of

the features necessary to understand the mechanics of

mylonite generation and evolution. Therefore, much effort

has been put into the physical and theoretical modelling of

rock behaviour, and authors like Passchier et al. (1993),

Hudleston and Lan (1994) and Schmalholz and Podladchi-

kov (2001) have pointed out the importance of the use of

geometrical patterns in deformed rocks to constrain rock

rheology.

The study of natural mylonites has shown that Jeffery’s

theory (Jeffery, 1922) for rigid ellipsoid rotation in simple
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shear is not directly applicable in many natural cases,

because many rigid inclusions show no signs of rotation and

many fabrics seem to be stable (rotation rate equal to zero).

This is one reason that there has been a concentration of

research on the factors that could alter the rotation

behaviour of rigid inclusions, such as: (i) the addition of a

pure shear component (e.g. Ghosh and Ramberg, 1976;

Passchier, 1987; Ježek et al., 1996; Marques and Coelho,

2003), (ii) inclusion interaction in multi-inclusion systems

(e.g. Fernandez et al., 1983; Ildefonse et al., 1992a,b; Ježek

et al., 1994; Samanta et al., 2003), (iii) slipping boundary

between inclusion and matrix (e.g. Ildefonse and Manckte-

low, 1993; Marques and Cobbold, 1995; Marques and

Coelho, 2001; Arbaret et al., 2001; Pennacchioni et al.,

2001; Mancktelow et al., 2002; Ceriani et al., 2003;

Marques and Bose, 2004; Schmid and Podladchikov,

2004), and (iv) confined flow (e.g. Marques and Cobbold,

1995; Pennacchioni et al., 2000; Marques and Coelho, 2001;

Biermeier et al., 2001; Taborda et al., 2004; Marques et al.,

2005). Confinement is defined as the ratio (S) between shear

zone width (H) and inclusion’s least principal axis (e2) (SZ
H/e2). Experimental and theoretical work by Marques and

Cobbold (1995), Marques and Coelho (2001), Taborda et al.

(2004) and Marques et al. (2005) has shown that

confinement can affect the matrix flow and, thus, the
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Fig. 1. (A) Representation of the computational domain with an elliptical inclusion. H and L are the height and length of the domain; e1 and e2 are the principal

axes of the elliptical inclusion; f is the angle between e1 and X, and is positive anticlockwise; Qn are quadrants from 1 to 4. The shear direction is parallel to the

X-axis and the sense of shear is top to right in all the models. (B) Shapes used in this study and respective aspect ratios (R). Adapted from Marques et al. (2005).
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rotation behaviour of rigid elliptical inclusions, and lead to

the development of stable shape preferred orientations

(SPO) in simple shear.

Ghosh and Ramberg (1976), Arbaret et al. (2001) and

Schmid (in press) showed, using analogue experiments and

analytical solutions, that the behaviour of rigid inclusions of

different shapes embedded in a Newtonian matrix under-

going simple shear is not significantly different from that

predicted for an enveloping ellipse by Jeffery’s analytical

solution. It thus appears that shape does not matter in wide

channels; what matters is the inclusion’s aspect ratio. In the

present paper, we show that the shape matters in confined

flow. Mancktelow et al. (2002), Ceriani et al. (2003) and

Marques and Bose (2004) investigated the effects of shape

on rotation behaviour, but only for the slipping mode, which

is not the case of the present paper.

In view of the above state of the art and following the

work initiated by Marques and Cobbold (1995), we carried

out a numerical study with the following objectives: (i) to

investigate the effects of confinement on rigid inclusion

rotation under viscous simple shear; and (ii) to analyse the

effects of inclusion’s aspect ratio, shape and initial

orientation on rotation. The numerical models provide a

wealth of physical information that was lacking in the
experimental work of Marques and Cobbold (1995) and

Marques and Coelho (2001). We are aware of the

shortcomings of a 2D study, especially if we accept that

the rigid inclusions rotate in the manner proposed by Jeffery

(1922). However, we are now studying a quite different

situation, which is rotation under confinement. Therefore,

we do not yet know how the rigid inclusions rotate in 3D,

under confinement, to compare with Jeffery’s results.

Besides, the only experimental data in conditions of

confined flow available for comparison are also 2D.
2. Model formulation and boundary conditions

Icompressible viscous fluid rheology is widely accepted as

a simple but effective approximation to the behaviour of rocks

undergoing ductile deformation. The mathematical model

used in the present work is based on the 2D steady-state

incompressible Navier–Stokes equations (e.g. Granger, 1994)
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Fig. 2. Velocity vector fields close to the inclusion for SZ10.0 (A) and 1.5 (B). Note that in (A), the velocities in the matrix all work for the synthetic rotation of

the inclusion and that in (B) a good deal of the matrix flow induces antithetic rotation of the inclusion. Sense of shear is top to right.
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where u is the velocity vector, p the pressure, r the density, h

the dynamic viscosity and F the external body force (r and h

are constants and F will be assumed negligible in this model).

The boundary conditions needed to complete the

mathematical formulation and define a simple shear flow

were (i) velocity set to valuesGVtop at YZGH/2 (Fig. 1a),

and (ii) velocity set to vary linearly between the top and

bottom velocities (with zero-mean) at the left and right end

boundaries (straight-out condition). The above equations

were solved in the 2D rectangular domain illustrated in

Fig. 1a, which was filled with an incompressible linear

viscous fluid with matrix viscosity (m) set to 1. High-

viscosity fluid-modelled inclusions (mZ1.0eC6) were

positioned at the centre of the domain (x, yZ0). The

boundaries between inclusion and matrix were set to neutral

(perfectly bonded), which means that the rigid inclusion

follows the flow passively. Therefore, the rotation of the

rigid inclusion is the result of the velocities applied at the

top and bottom boundaries. The width of the computational

domain was chosen according to the desired confinement

(SZH/e2). The length (L) was set to about 30 times the

greatest inclusion axis (e1). The flow equations, with the

boundary conditions specified, were solved in the primitive

variables uh(u,v) (u and v being the X and Y components of

velocity, respectively) and P over a finite element mesh,

using the algorithm for stationary incompressible Navier–

Stokes flows using the finite-element program FEMLAB

(2002). Pressure, velocity and vorticity were computed,

step-by-step, for different angles of inclusion orientation.

The mesh was refined for the cases of SZ1.2 and 1.5.

Further details of the computational method and numerical

procedures can be found in Gresho and Sani (2000).

The inclusion shapes studied were ellipses, rectangles,

lozenges and skewed rectangles (Fig. 1b), with the aspect

ratios (RZe1/e2) equal to 1, 1.5, 3 and 6, to simulate the

most common shapes found in natural shear zones. To

determine the rectangle R, we found the ratio between the

long and short sides (inscribed ellipse as in Ghosh and

Ramberg (1976)). For skewed rectangles, we used the

aspect ratio of the circumscribed ellipse where e1 is

coincident with the longest diagonal of the skewed

rectangle. In this case, the longest ellipse axis is inclined

relative to X when the long sides of the inclusion are parallel

to X. The angle between the instantaneous direction of e1

and the shear direction (X) is the inclusion orientation (f),

which is positive anticlockwise. There are two orientations

for which the inclusion rotation rate is zero: the stable (fse)

and unstable (fue) equilibrium orientations.
3. Numerical results

3.1. Velocity

A detailed description of the velocities around the

inclusions might be very interesting but is kept short due
to space constraints. We have restricted description to the

most relevant situations for the understanding of inclusion

rotation. The velocity vector fields for the ellipse in wide

and narrow channels are represented in Fig. 2.

When the channel is wide (SO10), the X-component of

the velocity field is always positive in the matrix in the

upper half of the model (Fig. 2a) and negative in the lower

half, in agreement with the applied far field velocity and

matrix vorticity. On the other hand, when the flow is

confined, e.g. SZ1.5 (Fig. 2b), there are regions around the

inclusion where the X-component of the velocity field is

negative in the upper half and positive in the lower half, i.e.

where there is back-flow. When SO10, the Y-component of

the velocity field close to the inclusion is always positive in

quadrants 2 and 3 (Q2 and Q3), and negative in Q1 and Q4

(Fig. 2a). When S is small, the Y-component of the velocity

field close to the inclusion is negative in much of Q2 and Q3,

and positive in much of Q1 and Q4 (Fig. 2b).

3.2. Pressure

Colour maps were developed to evaluate pressure in the

matrix (Fig. 3). The feature common to all shapes is the

pressure distribution by quadrants in the matrix, especially

at fZ08. The higher pressure quadrants in the matrix are in

the contraction quadrants of simple shear, and the lower

pressure quadrants are in the expansion quadrants. Pressure

in the matrix changes configuration with confinement and

inclusion rotation. The pressure magnitude increases

significantly with confinement, as can be inferred from the

examples shown in Fig. 3.

3.3. Vorticity

Once the inclusion is quasi-rigid, its angular velocity can

be estimated using the vorticity computed at an arbitrary

point inside the inclusion, here defined as

ððvvy=vxÞKðvvx=vyÞÞ, with an advantage that one can

compare the vorticities of inclusion and matrix. When the

vorticity is zero, the inclusion is in an equilibrium

orientation, either stable (fse) or unstable (fue); when it is

negative, the inclusion is rotating clockwise (synthetic in

our models); when it is positive, the inclusion is rotating

anticlockwise (antithetic in our models). The stability

character of each equilibrium solution can be found through

the numerical derivative of the rotation rate over the

orientation ðv _f=vfÞ: if it is positive, the equilibrium is

unstable, and if it is negative the equilibrium is stable.

The numerical results for inclusion rotation in the

confined flow are summarised in Table 1 and represented

as graphs in Fig. 4. Comparison between the rotation

behaviour of all inclusion shapes shows that:

(1) Inclusion rotation behaves in two distinct ways when S

allows a full revolution: (i) near-sinusoidal with more

than one wavelength within 1808 of inclusion rotation,



Fig. 3. Colour maps to illustrate confinement effects on pressure (in Pa) for the circle at SZ10.0 (A) and 1.5 (B), and for the ellipse at SZ10.0 (C) and 1.5 (D). Pressure inside the rigid inclusions is not shown

(black fill). Sense of shear is top to right.
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Table 1

Summary of the numerical results on inclusion rotation, regarding stable (fse) and unstable (fue) equilibrium orientations

Ellipse Rectangle Rectangle Lozenge

Skew right Skew left

RZ1.0 SZ1.2 fse NE (*1)

fue NE (*1)

SZ1.5 fse NE NE

fue NE NE

RZ1.5 SZ1.2 fse (*2) 24 (*3) (*4) 0 (*6) 2 (*8) 26

fue (*2) K24 (*3) (*5) K2 (*7) 0 (*8) 26

SZ1.5 fse (*9) 8 (*10) (*11) 0 (*13) 7 11

fue (*9) K8 (*10) (*12) K7 (*14) 0 K11

SZ2.0 fse NE NE (*15) K1 (*17) 14 NE

fue NE NE (*16) K14 (*18) 1 NE

SZ3.0 fse NE NE NE NE NE

fue NE NE NE NE NE

RZ3.0 SZ1.2 fse (*1) 12 (*19) 0.5 (*20) 0 (*22) 1.5 (*24) 18

fue (*1) K12 (*19) K0.5 (*21) K1.5 (*23) 0 (*24) K18

SZ1.5 fse (*24) 14 (*25) 1.5 (*26) 0 (*28) 5 (*30) 18

fue (*24) K14 (*25) K1,5 (*27) K5 (*29) 0 (*30) 18

SZ4.0 fse 5 NE (*31) 2 (*33) 22 9

fue K4 NE (*32) K22 (*34) K2 K9

SZ5.0 fse NE NE (*35) 1 (*37) 20 4

fue NE NE (*36) K20 (*38) K1 K4

SZ8.0 fse NE NE K2 14 NE

fue NE NE K14 2 NE

SZ10.0 fse NE NE NE NE NE

fue NE NE NE NE NE

RZ6.0 SZ1.2 fse (*39) 6 (*40) 0.5 (*41) 0 (*43) 1 (*45) 9

fue (*39) K6 (*40) K0.5 (*42) K1 (*44) 0 (*45) K9

SZ1.5 fse (*46) 7 (*47) 0.5 (*48) 0 (*50) 2.5 (*52) 9

fue (*46) 7 (*47) 0.5 (*49) 2.5 (*51) 0 (*52) K9

SZ10.0 fse 5 NE (*53) 3 (*55) 13 6

fue K5 NE (*54) K13 (*56) K3 K6

SZ12.0 fse NE NE 3 12 3

fue NE NE K12 K3 K3

SZ20.0 fse NE NE 0 10 NE

fue NE NE K10 0 NE

SZ24.0 fse NE NE NE NE NE

fue NE NE NE NE NE

Full inclusion rotation is possible for bold items. NE, non-existent stable or unstable equilibrium orientations in a full rotation. *n, full inclusion rotation is not possible because inclusion touches the shear zone

walls after some rotation from fZ08: *1–G138; *2–G358; *3–G88; *4–K48; *5–K68; *6–68; *7–K48; *8–G538; *9—G808; *10–G228; *11–108; *12–K168; *13–168; *14–K108; *15–238; *16–K378;

*17–378; *18–K238; *19–G48; *20–28; *21–K38; *22–38; *23–K28; *24–G238; *25–G108; *26–58; *27–K98; *28–98; *29–K58; *30–G308; *31–338; *32–K518; *33–518; *34–K338; *35–468; *36–K

658; *37–658; *38–K468; *39–G6.58; *40–G28; *41–18; *42–K28; *43–28; *44–K18; *45–G128; *46–G118; *47–G58; *48–28; *49–K58; *50–58; *51–K28; *52–G158; *53–528; *54–K628; *55–628;

*56–K528.
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Fig. 4. Graphs to illustrate evolution of vorticity with inclusion orientation for SZ1.5. Note that SZ1.5 does not allow a full revolution of the rectangle and

skewed rectangle. (D) Graph to illustrate the dependence of circle rotation on S.
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which is the case of the square (Fig. 4a), and (ii) near-

sinusoidal or just oscillating with half-wavelength

within 1808 of inclusion rotation for all other shapes.

(2) The rotation behaviour of the circle in the confined flow

is significantly different from that of the square, despite

the identical R. The circle vorticity is constant (Fig. 4a)

but depends on S (Fig. 4d), as also shown by Biermeier

et al. (2001), and only approximates the far field matrix

vorticity (K1) for S values greater than 5. The circle’s

vorticity curve is asymptotic relative to X and Y,

approaching K1 with increasing S and approaching 0

with decreasing S. In contrast to the circle, the square’s

vorticity is oscillating (Fig. 4a), depending on the

orientation of the square’s sides relative to X. When

there is no fse, the rotation of inclusions with RO1 is

also oscillating.

(3) There are two orientations for which the inclusion

rotation rate can be zero in inclusions with RO1, fse

and fue. Note, however, that R values for which there is

a fse change significantly with shape. For instance, at

SZ5.0 and RZ3.0, only the skewed rectangles and the

lozenge have fse, and if S increases to 8 only the skewed

rectangles have fse.

(4) The values of fse and fue given in Table 1 for the
skewed rectangles are valid only for the chosen skew

angle.

(5) Synthetic and antithetic rotations are limited when there

is fse, independent of the amount of shear deformation

thereafter.

(6) The angular values of fse and fue depend on S, and

when the confinement is effective, shape and R also play

an important role. However, there seems to be no

common rule for the computed fse and fue variations.

(7) The shapes of the inclusion vorticity curves are similar

for all shapes with RO1 when there is a fse, but the

values change significantly with S, shape and R.
4. Discussion

One major result of our numerical model is that all

studied shapes with 6RRO1 may display fse and fue,

depending on S, with the exception of a rectangle with RZ
1.5.

In our model, pressure and viscous effects on the

inclusion perimeter result from the computed velocity and

pressure fields. The issue is their relative importance in the
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process. As shown in Section 3.1, in non-confined flow, the

X-component of the velocity field is always positive in the

upper half of the model and negative in the lower half,

which indicates an overall clockwise rotation (negative

vorticity of the flow) that drives the inclusion’s synthetic

rotation. It means that the inclusion is following the viscous

flow passively. This contrasts with the confined case, in

which there are regions around the inclusion where the

X-component of the velocity field is negative in the matrix

in the upper half of the model and positive in the lower half,

i.e. where there is back flow (Fig. 2). Therefore, one part of

the flowing matrix is driving synthetic rotation and another

part is forcing antithetic rotation. The Y-component of the

velocity field plays a similar role to that played by the

X-component. This means that the inclusion is resisting flow

and rotation according to matrix far field vorticity. On the

other hand, pressure gradients around the inclusion greatly

increase with confinement. In quadrants 1 and 3, the

pressure is negative, and in quadrants 2 and 4 the pressure is

positive; these pressure gradients drive antithetic inclusion

rotation because the inclusion rotates simultaneously away

from pressure highs and towards pressure lows. Therefore,

matrix flow and pressure gradients add effects to make the

inclusions rotate antithetically in the confined flow.

Concerning inclusion rotation, this study shows that:

1. The rigid circle and the square rotate differently, which

means that shape matters in the confined, non-slipping

mode for inclusions with RZ1. In the case of the circle,

normal stresses induced by the flowing matrix cannot

play a direct role in rotation because they cannot

generate torques. Therefore, shear stresses alone govern

rotation (whatever their magnitude). Although the

rotation rate of the circle approaches zero with

confinement (Fig. 4d), it is never zero. Therefore, our

model cannot explain the hypothesis of Bell and Johnson

(1989) that spherical inclusions like garnet do not rotate

when embedded in a matrix undergoing simple shear

flow (see also Jung et al., 1999; Bell and Kim, 2004; Bell

et al., 2004).

2. Inclusion rotation depends strongly on S. With confine-

ment, the vorticity, velocity and pressure fields change in

the matrix around the inclusion, which affects the

inclusion rotation.

3. fse and fue depend strongly on the shape for identical R

when the confinement is effective. The contrasting

geometries of the inclusions, and in particular the

disposition of the geometric elements of each shape

relative to the far field flow, control the distributions and

magnitudes of normal and shear stresses along the

inclusion surface, and therefore determine inclusion

rotation behaviour. Good examples are the ellipse and

the rectangle at fZ08. The ellipse shows a smooth

rounded perimeter that gradually changes orientation

relative to the matrix flow, in great contrast to the

angular character of the rectangle perimeter, with short
sides normal to and long sides parallel to the far field

flow. Again, shape matters in this mode for identical R.

4. The fZ08 of the skewed rectangles was taken in this

study as the orientation in which the long sides are

parallel to X. This is inconsistent with the definition

given above, but it seems reasonable when we compare

with the rectangle at fZ08. If we take the definition

strictly, the fZ08 of the skewed rectangles should be

when the enveloping ellipse is at fZ08. Therefore, the

curve in the graph of Fig. 4c should be translated by 198

parallel to X, which is the dip of the enveloping ellipse

when the long sides of the skewed rectangle are parallel

to X.
5. Geological significance

Where can we find confinement in nature? It can be

found in layered rocks like sedimentary, metamorphic or

magmatic rocks. Layers of contrasting mineral composition

usually show different rheological behaviour, indicating that

flow can be markedly heterogeneous. The different

rheological behaviour between adjacent layers can con-

centrate shear deformation in narrow ductile zones of softer

rock bounded by harder rock, and lead to confined flow. The

photograph of a natural ductile shear zone in Fig. 5

illustrates confinement. Again, different rheological behaviour

between layers of contrasting mineralogy leads to shear

concentration: the softer mylonites inside the ductile shear

zone are mostly composed of calcite (Gsilicates), bounded by

harder mafic granulite rich in garnet, pyroxene and plagio-

clase. An elliptical ‘rigid inclusion’ of mafic granulite tilted

opposite to the shear sense, which is top to right, is present

within the shear zone. Our interpretation is that this is a stable

equilibrium orientation resulting from the confined flow.

Information on the geological setting of the rocks illustrated in

Fig. 5 can be found in Marques et al. (1996).
6. Conclusions

To summarise, we conclude that:

(1) Inclusion rotation is strongly influenced by S and, when

confinement is effective, aspect ratio and shape also

play an important role.

(2) Inclusions with the aspect ratio equal to one still rotate

synthetically when confined, but at a rate that depends

upon S, shape (circle or square) and orientation, which

is not the case in the non-confined mode.

(3) Ellipses, rectangles, lozenges and skewed rectangles

may rotate antithetically when starting with fZ08,

depending on confinement. Back rotation is limited

because the inclusions reach a stable equilibrium

orientation (fse).



Fig. 5. Photograph of natural occurrence from the Bragança Massif, NE Portugal, to illustrate the possible confinement. Softer mylonites inside a ductile shear

zone, mostly composed of calcite (Gsilicates), are bounded by harder mafic granulites rich in garnet, pyroxene and plagioclase, which acted as the shear zone

walls. The elliptical ‘rigid inclusion’ of mafic granulite observed within the shear zone is tilted opposite to the shear sense and is interpreted as a stable

equilibrium orientation resulting from the confined flow. Hammer for scale at top right of the granulite inclusion. Adapted from Marques and Cobbold (1995).
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(4) There is also an unstable equilibrium orientation (fue),

which defines an antithetic rotation field with fse, and

both fse and fue depend on S, and inclusion R and

shape.

(5) Matrix re-flux and pressure gradients add effects to

make the inclusions rotate antithetically in confined

flow.
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Ježek and L. Arbaret, and editorial work by J. Hippertt are

gratefully acknowledged. We thank Paul Covill for having

corrected the English. We thank IBM Portugal for

computational support, in particular Paulo Antunes and

Hugo Figueiredo.
References

Arbaret, L., Mancktelow, N., Burg, J.-P., 2001. Effect of shape and

orientation on rigid particle orientation and matrix deformation in

simple shear flow. Journal of Structural Geology 23, 113–125.

Bell, T.H., Johnson, S.E., 1989. Porphyroblast inclusion trails: the key to

orogenesis. Journal of Metamorphic Geology 7, 279–310.

Bell, T.H., Kim, H.S., 2004. Preservation of Acadian deformation and

metamorphism through intense Alleghanian shearing. Journal of

Structural Geology 26, 1591–1613.
Bell, T.H., Ham, A.P., Kim, H.S., 2004. Partitioning of deformation along

an orogen and its effects on porphyroblast growth during orogenesis.

Journal of Structural Geology 26, 825–845.
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